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We propose a conceptual and formal characterisation of biological organisation as a closure of
constraints. We first establish a distinction between two causal regimes at work in biological systems:
processes, which refer to the whole set of changes occurring in non-equilibrium open thermodynamic
conditions; and constraints, those entities which, while acting upon the processes, exhibit some form of
conservation (symmetry) at the relevant time scales. We then argue that, in biological systems,
constraints realise closure, i.e. mutual dependence such that they both depend on and contribute to
maintaining each other. With this characterisation in hand, we discuss how organisational closure can
provide an operational tool for marking the boundaries between interacting biological systems. We
conclude by focusing on the original conception of the relationship between stability and variation
which emerges from this framework.
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1. Introduction

In theoretical biology, an enduring tradition has placed heavy
emphasis on the idea that biological systems realise what could be
referred to as “self-determination”. That is, in very general terms, the
capacity of a system's constitutive organisation to contribute to the
determination and maintenance of its own conditions of existence
through the effects of its activity (see also Mossio and Bich, 2014, for
more details). Usually (Weber and Varela, 2002), the origin of this
tradition is traced back to the characterisation of biological systems as
“self-organising”, as Kant proposed in his Critique of Judgement (Kant,
1790). Over the last two centuries a number of authors, more or less
explicitly inspired by Kant, have been proposing conceptual and
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theoretical accounts aimed at understanding the principles underlying
biological self-determination.

Following Claude Bernard's seminal work (Bernard, 1865, 1878),
during the first half of the 20th century self-determination was
initially investigated as homeostasis (Cannon, 1929) and mathemati-
cally expressed in terms of feedback loops by first-order Cybernetics
(Wiener, 1948; Ashby et al., 1956). Homeostasis, however, is a general
systemic capacity, exhibited by both biological organisms and some
artefacts (as the classical example of the thermostat shows). Accord-
ingly, recent contributions have aimed at going beyond the limitations
of the notion of homeostasis in order to better capture the specificities
of biological self-determination. In this respect, relevant contributions
were made during the 1960s by embryology (Weiss, 1968). Wadding-
ton, in particular, suggested that in the biological domain homeostasis
should be interpreted as homeorhesis (stability of dynamics rather than
stability of states), insofar as in biological systems what “is being held
constant is not a single parameter but is a time-extended course of
change, that is to say, a trajectory” (Waddington, 1968, p. 12).

A crucial step in the theoretical elaboration of biological self-
determination is the account put forward by Piaget (1967), whose
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core idea is to integrate in a single coherent picture two inherent
dimensions of biological systems: thermodynamic openness and
organisational closure. On the one hand, biological systems are, as
von Bertalanffy (1952) had already emphasised, thermodynamically
open (dissipative) systems, traversed by a continuous flow of matter
and energy; yet on the other hand, they realise closure, which refers to
mutual dependence between a set of constituents which could not
exist in isolation, and which maintain each other through their
interactions. In Piaget's view, biological self-determination is specifi-
cally related to closure which, through the association between
division of labour and mutual dependence that it implies, captures
a fundamental aspect of the idea of “organisation” as such. In a word,
biological systems self-determine because they are organised, and
they are organised because they realise closure.

The centrality of organisational closure and its connection to
organisation, as well as its distinction from (and complementarity
to) thermodynamic openness, have become givens in most sub-
sequent accounts of biological self-determination (Letelier et al.,
2011). One of the best-known formulations is the one centred on
the concept of autopoiesis (Varela et al., 1974; Varela, 1979) which,
among other aspects, emphasises the generative dimension of
closure: biological systems self-determine in the specific sense
that they “make themselves” (auto-poiein). Precisely because of
their dissipative nature, the components of biological systems are
maintained only insofar as they maintain and stabilise not just
some internal states or trajectories, but the autopoietic system
itself, as an organised unity.

In spite of its qualities, however, the concept of autopoiesis
(and related computational models, see McMullin, 2004) suffers in
our view from a central weakness, insofar as it does not provide a
sufficiently explicit characterisation of closure. Biological systems
are at the same time both thermodynamically open and organi-
sationally closed, but no details are given regarding how the two
dimensions are interrelated, how closure is actually realised, what
constituents are involved, and at what level of description. In the
absence of such specifications, as already highlighted by previous
critical interpretations of the autopoietic theory (see in particular
Fleischaker, 1988; Ruiz-Mirazo and Moreno, 2004), it remains
unclear in what precise sense closure would constitute a causal
regime which distinctively characterises biological organisation
and its capacity for self-determination. In particular, closure might
be generically understood as a causal regime involving some sort
of circularity, fundamentally no different from the numerous
examples of circular chains of transformations, that frequently
occur in the natural (although not necessarily biological) world. Is
there some principled difference between biological closure and all
other kinds of causal cycles?

A concerted attempt to answer this question has been made by
Robert Rosen, who has explicitly claimed that a sound understanding of
biological organisation should account for the distinction between
closure and openness in terms of a distinction between two causal
regimes. In Life Itself (Rosen, 1991), Rosen's account of closure is based
on a reinterpretation of the Aristotelian categories of causality and, in
particular, on the distinction between efficient cause and material cause.
Let us consider an abstract mapping f between the sets A and B, so that
f : A»B. If we interpret the mapping in causal terms, and look for the
causes of B, Rosen claims (and develops a detailed conceptual and
formal justification, that we will not repeat here) that A is the material

3 The generative nature of closure seems to adequately encompass one of the
main differences between biological systems on the one hand, and artefacts and
other categories of natural systems on the other hand. Intuitively, it seems correct
that those situations in which the existence of the parts depends on that of the
whole system are indeed characteristic of biological organisms. The parts of a rock
do not dissolve if the whole is broken into pieces, just as the components of a
computer do not disintegrate if the whole machine is disassembled.

cause of B, while f is the efficient cause. By relying on this distinction,
Rosen's central thesis is that “a material system is an organism |[a living
system] if, and only if, it is closed to efficient causation” (Rosen, 1991,
p. 244). In turn, a natural system is closed to efficient causation if, and
only if, all components having the status of efficient causes within the
system are materially produced by the system itself.

An analysis of Rosen's account in all its richness would by far
exceed the scope and limits of this paper. Let us just mention that,
recently, several studies have made substantial contributions to re-
examining, interpreting and developing Rosen's ideas (Piedrafita
et al,, 2010; Letelier et al., 2003, 2006; Wolkenhauer and Hofmeyr,
2007). What matters for our present purposes is that closure, and
therefore self-determination, is located at the level of efficient
causes: what constitutes the organisation is the set of efficient
causes subject to closure, and its maintenance (and stability) is the
maintenance of the closed network of efficient causes.

In this paper, we develop an account of organisational closure
which is directly inspired by and, we believe, consistent with the
theoretical framework established by Rosen. Nevertheless, although
Rosen made clear progress in the understanding of biological orga-
nisation with respect to previous formulations, we believe that his
characterisation of closure is not fully satisfactory. The main limita-
tion is that it remains too abstract, and therefore hardly applicable as
a guiding principle for biological theorising, modelling and experi-
mentation. Closure is defined by Rosen as involving efficient causes
but, without additional specifications, it might be difficult to identify
efficient causes in the system: what entities actually play the role of
efficient causes in a biological system? How should the relevant level
of causation at which self-determination occurs be characterised?

To deal with this issue, decisive insights have emerged from
more recent literature which emphasise, in line with Piaget's
initial view, the “thermodynamic grounding” of biological systems
(Bickhard, 2000; Christensen and Hooker, 2000; Moreno and Ruiz-
Mirazo, 1999). In particular, Kauffman (2002) suggests retrieving
the classic idea of “work cycle” (in the sense of the Carnot engine),
and applying it within the context of self-maintaining biochemical
reactions. Based on Atkins's ideas about work, conceived as a
“constrained release of energy” (Atkins, 1984), Kauffman argues
that a circular relationship between work and constraints must be
established in a system in order to achieve self-determination, in
the form of a “work-constraint (W-C) cycle”. When a (W-C) cycle
is realised, constraints which apply to the system are not inde-
pendently given (as in the Carnot engine) but rather are produced
and maintained by the system itself. Hence, the system needs to
use the work generated by the constraints in order to generate
those very constraints, by establishing a mutual relationship, i.e. a
cycle, between constraints and work.

In a fundamental sense, the account of closure that we provide
in this paper lies at the intersection between Rosen's and Kauff-
man's proposals. In particular, our central thesis is that organisa-
tional closure should be understood as closure of constraints, a
regime of causation which is at the same time distinct from - and
related to - the underlying causal regime of thermodynamic
openness. It is important to underline that our purpose is by no
means to provide a model of closure which would adequately
capture the complexity of real biological systems. Rather, we
conceive this paper as a contribution to characterise in precise
terms some of the general features of closure, which might
subsequently be used to develop models of biological organisation.
Our aim, in other words, is to explicitly state what makes closure a
distinctive causal regime, characteristically at work in biological
systems.*

4 The question of whether or not closure is a necessary and sufficient condition
for characterising biological systems is not discussed here. Consequently, we do not
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The structure of the paper is as follows. In Section 2, we specify
the main idea which underpins our characterisation of closure. In
particular, we put forward an understanding of biological self-
determination in terms of spatio-temporally localised constraints
exerted on physical and chemical processes. In Section 3, we
develop specific theoretical and formal criteria for drawing a
distinction between constraints and processes, which correspond
to two regimes of causation. Section 4 goes one step further, by
elucidating how the idea of dependence among constraints should
be conceived in the biological domain. Section 5 introduces
closure, as the specific case of mutual dependence between a set
of constraints. Section 6 provides a preliminary account of how
closure can be used to draw boundaries between interacting
biological systems. Finally, in the conclusion, we briefly discuss
how the present framework conceives the relations between
invariance and variation, between stability and change in biologi-
cal phenomena.

2. Biological determination as self-constraint

The main aim of this paper is to understand organisational
closure in terms of the mutual dependence which exists among a
set of entities that fulfil the role of constraints within a system.

What do we mean by constraints? In contrast to fundamental
physical equations and their underlying symmetries, constraints
are contingent causes,’ exerted by specific structures or dynamics,
which reduce the degrees of freedom of the system on which they
act. As additional causes, they simplify (or change) the description
of the system, and enable an adequate explanation of its behaviour
to be provided, an explanation which might otherwise be under-
determined or wrongly determined.

In describing physical and chemical systems, constraints are
usually introduced as external determinations (boundary condi-
tions, parameters, restrictions on the configuration space, etc.),
which contribute to determining the behaviour and dynamics of a
system, although their existence does not depend on the dynamics
on which they act (Pattee, 1972, 1973). To take a simple example,
an inclined plane acts as a constraint on the dynamics of an object
sliding or rolling on it, whereas the constrained dynamics (the
sliding) do not play a causal role in producing and/or maintaining
the plane itself. In some cases, however, the constrained dynamics
do play a role in determining the conditions of existence of (a
subset of) the constraints acting on them; in some specific
circumstances, in particular, the existence of each constraint
depends on the existence of the others, as well as on the action
that they exert on the dynamics. In this kind of situation, the set of
constraints realises self-determination as organisational closure.

The idea behind this conception of closure is that biological
self-determination occurs in the form of self-constraint. Like all
open systems, be they physical or chemical, biological systems are
traversed by a flow of energy and matter, which takes the form of
processes and reactions occurring in open thermodynamic condi-
tions. In this respect, organisms do not differ, qualitatively, from
other natural thermodynamically open systems. At the same time,
however, one of the specificities of biological systems is the fact
that the thermodynamic flow is constrained and canalised by a set
of constitutive constraints in such a way as to establish a specific

(footnote continued)
explore the possibility that some specific classes of non-biological natural systems
(such as, for instance, complex chemical systems) might be pertinently said to
realise closure. For a discussion of this issue, see Mossio and Bich (2014).

5 While fundamental symmetries in physics are theoretical hypotheses that are
always valid in principle, and therefore do not need a cause, biological constraints
do require a cause (typically an object, such as an inclined plane).

form of mutual dependence between those very constraints.
Accordingly, the organisation of the constraints can be said to
achieve self-determination as self-constraint, since the conditions
of existence of the constitutive constraints are, because of closure,
mutually determined within the organisation itself.®

In this paper, we base the theoretical and formal characterisa-
tion of closure on the concept of symmetry (see for example Weyl,
1983; Goodman and Wallach, 2009). In very general terms,
symmetries refer to transformations that do not change the
relevant aspects of an object: symmetries and invariants (of
energy, momentum, electrical charges, etc.) are therefore comple-
mentary concepts, both mathematically and physically. In describ-
ing an object, symmetries are relevant in relation to different
aspects, which might not be spatial in the intuitive sense. For
example, the notion that two replicates of an experiment corre-
spond to the same kind of situation relies on an assumption of
symmetry between their respective behaviours. Another example
comes from classical electromagnetism, in which the transforma-
tion that inverts all charges (changing positive charges to negative
ones and vice versa) does not alter the resulting behaviour, and
can therefore be understood as a symmetry of the equations
involved. In mathematical approaches to natural phenomena,
symmetries justify the theories formulated (Van Fraassen, 1989;
Bailly and Longo, 2011; Longo and Montévil, 2014). In particular,
symmetries are at the core of the constitution of scientific objects:
they ground their theoretical and mathematical characterisation
(by defining their description space) and make it possible to write
equations describing their behaviour (i.e. their specific trajectory)
in those situations in which the values of the parameters and
initial conditions are specified.”

The theoretical characterisation of closure as a specific kind of
symmetry provides, we submit, a principle for understanding the
stabilisation of biological phenomena. One of the authors of this
paper has recently argued (Longo and Montévil, 2011, 2014) that
biological systems can be understood in terms of “extended critical
transitions”, which mean that they form coherent structures,
whose proper® symmetries are inherently unstable. Biological
symmetries may change unpredictably, both at the individual
and evolutionary scale. In contrast to the role played by theoretical
symmetries in the mathematical and theoretical definition of
physical objects, their instability in the biological domain under-
lies the fundamental contextuality, variability and historical nature
of biological phenomena. In the light of these background assump-
tions, it follows that theoretical symmetries in biology are con-
tingent and can have only a limited temporal range of applicability.

The theoretical framework developed in this paper aims to
complement this picture by exploring how biological symmetries
can display some degree of stabilisation at the relevant temporal
and spatial scales. Constraints correspond to theoretical symme-
tries that are local, in the sense of being stable at limited temporal
and spatial scales. These symmetries are related to specific
dynamics and structures which constitute biological systems,
and which are wusually investigated (theoretically and

5 The idea of self-constraint is highly reminiscent and elaborates on the idea of
self-construction put forward by Ruiz-Mirazo and Moreno in their analysis of basic
autonomy (Ruiz-Mirazo and Moreno, 2004).

7 There are many mathematical types of theoretical symmetries. For instance,
they can have a statistical nature, as in the case of statistical mechanics, which
assume that all microstates with the same energy are symmetric, in the specific
sense of having the same probability. Similarly, in quantum mechanics, two
systems in the same state will only yield the same measurement (and thus be
equivalent) in accordance with a statistical distribution. In both cases, the
theoretical symmetry refers to transformations which, on principle, leave relevant
features of the object invariant.

8 By “proper” symmetries we mean those theoretical symmetries which
ground the characterisation of biological systems as specific scientific objects.
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experimentally) by biological science. For its part, organisational
closure refers to the encompassing causal regime through which
constitutive constraints achieve further stabilisation. Given that,
ex hypothesi, biological symmetries are unstable, biological sys-
tems achieve self-determination insofar as organisational closure
involves their stabilisation in the long run. As such, closure is at
the core of the very constitution of biological phenomena as
scientific objects.

We will come back to the relations between stability and
variation in our framework in the conclusion section. Now, let us
develop the notion of constraints in more explicit conceptual and
formal terms.

3. Constraints and processes

The characterisation of closure relies on a theoretical distinc-
tion between two different regimes of causation, which we
propose to ground in terms of a distinction between processes
and constraints (exerted on the processes).

In a general sense, processes refer to the whole set of changes
(typically physical processes, chemical reactions, etc.) that occur in
biological systems and involve the alteration, consumption, pro-
duction and/or constitution of relevant entities. Constraints, on the
other hand, refer to entities which, while acting upon these
processes, can be said from the appropriate viewpoint to remain
unaffected by them. A given theoretical entity, as we will see,
cannot be qualified as a constraint per se, but only in relation to a
specific process and the relevant time scale at which this process
occurs. This context- and scale-dependence is, in our view, a
general feature of constraints. In this section, we suggest defining
constraints as entities which exhibit a symmetry with respect to a
process (or a set of processes) that they help stabilise. More
formally:

Definition 1 (Constraint). Given a process A— B (A becomes B), C
is a constraint on A— B, at a specific time scale 7, if and only if the
following two conditions are fulfilled:

I The situations A—B and Ac — B¢ (i.e. A— B under the influence
of C) are not, as far as B is concerned, symmetric at a time scale
7.
Note Ca_p those aspects of C which play a role in the above
asymmetry between A— B and Ac — B¢ at time scale 7.

II A temporal symmetry is associated with all aspects of C4_,p
with respect to the process Ac — B¢, at time scale 7.

Conditions I and II can be met after (properly justified)
quantitative approximations.” The situation which fulfils condi-
tions I and II will be expressed as ASB (r) or, in an expanded
graphical form, as

C

T A——o— B

Let us now discuss each of these conditions, and the motivation
behind them. We will refer to two concrete examples: the action
of the vascular system on the flow of oxygen, and that of an
enzyme on a chemical reaction.

9 Approximations are a standard mathematical tool in physics and chemistry.
To take a simple example, although protons disintegrate spontaneously in the
(very) long run, chemistry can justifiably consider them as conserved at shorter
time scales.

I The first condition requires that a constraint exerts a causal role
on the target process. In formal terms, we express this by
stating that the situations with or without the constraint are
different'® (asymmetric). This must be true when considering
the effects of the constraint rather than its mere presence.'!
Consider the vascular system. There is an asymmetry between
the flow of oxygen when considered under the influence of the
vascular system (Ac—Bc¢) and when not (A—B) since, for
instance, Ac — B¢ occurs as a transport canalised to the neigh-
bourhood of every cell, whereas A—B has a diffusive form.
Consequently, the situation fulfils condition I, with the vascular
system playing a causal role in the flow of oxygen.

Similarly, there is an asymmetry between a chemical reaction
when considered under the influence of an enzyme (Ac— Bc)
and when not (A—B) since, typically, Ac—Bc occurs faster
than A—B.

A constraint, while it changes the way in which a process
behaves, is not altered by (i.e. is conserved through) that
process at the scale at which the latter takes place. The second
condition captures this property by stating that C or, more
precisely, those aspects C4_,3 by virtue of which the constraint
exerts the causal action'? exhibits a symmetry with respect to
the process involving A, B and C.

Again, let us consider the examples. A temporal symmetry is
associated with the vascular system C with respect to the
transformation Ac — B¢ since, among other things, the spatial
structure of the vascular system remains unaltered at the time
scale required to accomplish the transport of oxygen molecules
from the lungs to the cells. Hence, the situation fulfils conditions
II, which means that the relevant aspects C4_, g (here, the spatial
structure) are conserved during the process of oxygen transport.
Similarly, a temporal symmetry is associated with the configura-
tion of an enzyme, which is conserved during the reaction.'
Note that at time scales shorter than 7, an enzyme does undergo
alterations insofar as it binds to the substrate. The symmetry is
respected only by considering the whole process at 7, when the
enzyme unbinds and returns to its initial configuration.

I

=

Since they meet the two conditions, both the vascular system
(with respect to oxygen transport) and enzymes (with respect to
the catalysed reaction) can be considered constraints within the
organism.

It is of fundamental importance to emphasise that each condi-
tion is met only at the relevant time scale and, in particular, that the
time scale 7 at which conditions I and II must be fulfilled is the
same.'? A constraint, to be such, must conserve its relevant aspects

10 The impact can be deterministic, probabilistic, or even of a more sophisti-
cated nature, depending on the theoretical description of the considered process.

' This condition is formally important because it would otherwise be trivially
true that a situation A— B and a situation A— B with C are different, simply because
the new object C has been added. However, the presence of C does not necessarily
change anything for the objects present only in the first situation (A and B), since
this depends on whether or not they interact with C in a relevant way.

2 In what follows, we will generically use the notation C instead of C,_p
whenever this does not give rise to confusion.

3 Note that the concentration, nature and spatial distribution, etc., of the
population of enzymes are also preserved during the reaction (see also below for
more details on this point).

4 A time scale is a characteristic time associated with a dynamics. In other
words, it is a quantity which has the physical dimension of a time and represents
the pace of a dynamics. From a more technical viewpoint, a time scale is typically
(but not exclusively) obtained by exhibiting a decreasing exponential t—exp(—t/7)
associated with the process (for example describing the return to equilibrium of
the process after a perturbation). The time scale is then 7, which characterises the
time window in which the relevant aspects take place. In particular, a time scale is
not necessarily associated with the overall duration of the process that, in some
cases, can last for arbitrarily large time windows. Consider, for instance, the
enzyme lactase in a bacterium and assume that there are stationary fluxes of
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at the same time scale at which its causal action is exerted, even
though changes and alterations may occur at shorter and/or longer
time scales. Indeed, it is precisely because of their conservation
that constraints are able to exert their causal power. Consider our
two examples. The structure of the organism's vasculature does
not change at those time scales at which it channels the flow of
oxygen; yet, the structure of the system does change at longer
time scales due to the effects, for example, of neovascularisation.
The same holds true for enzymes, which are conserved at the time
scale of catalysis, while decaying and randomly disintegrating at
longer scales. Moreover, as mentioned above, enzymes also
undergo alterations at shorter time scales (since they bind with
the substrate and lose or gain electrons, protons, etc.) and are then
restored when catalysis is achieved.

The key role of time scales in the definition of constraints
should not obscure the fact that the specific definition of a
constraint uses other aspects also, such as the spatial scale. Indeed,
in order to adequately characterise processes, and the constraints
acting on them, one must consider the relevant system, and hence
the relevant quantity of space (extension, volume, etc.). For
example, it is necessary to consider a system large enough to
include the flow of oxygen and the topology of the vascular system
(thus, it must be a system of at least the same size than the
vascular system itself). However, while it is of course true that
constraints do depend on spatial scales, we maintain that this
scale does not play a specific role in characterising constraints in
the sense that, on a first approximation,'” variations in the spatial
scale do not affect the symmetries which define them. In contrast,
constraints are altered when the temporal scale varies. The proper
symmetries of biological constraints can be broken over time and,
therefore, must be actively maintained or rebuilt within the
system (which, as we will see, leads to organisational closure).
Moreover, as mentioned in the Introduction, constraints may be
reorganised in unpredictable ways over time (Longo et al., 2012a).

A similar point holds true for the levels of description, which
can be roughly thought of as the degree of “detail” or “granularity”
with which a situation is described at some temporal and spatial
scales. In many cases, an equivalence can be drawn between the
descriptions of constraints at different levels. For instance, the
vascular system can be described as a smooth surface forming a
tube (its topology) or as a collection of cells clustered together in a
specific way (with the same “tube” topology). Some levels of
description may be more suitable than others for explanatory
reasons; and yet, the proper symmetries of the constraints do not
vary — again, on a first approximation'® — when different levels of

(footnote continued)

lactose that are constrained by this enzyme. These fluxes can last for an arbitrarily
long time, yet their time scale is determined by the time required to digest a given
quantity of lactose inside the cell. In the case of the vascular system, the blood
circulation time (i.e. the time needed on average for blood to travel from one
atrium of the heart to the rest of the organism via the lungs and the other atrium
and back to the same atrium) can be used to obtain the relevant time scale. Note
that the time scale depends on the specific definition of B, in particular in those
cases in which different viewpoints are possible. For example, one can focus on a
single segment of a vein (or an artery), in which case the process would be the
displacement of oxygen from one side of the segment to the other, and the time
scale would be the time (given by the speed of blood x the length of the segment)
required for such a displacement.

15 By this we mean that, in the general case, the proper symmetries of the
constraints do not depend on the spatial scale. However, this may indeed be the
case in some specific situations that are not discussed in this paper.

16 One may think of situations in which some symmetries are observed only at
some levels of description. We have no principled objection to this possibility,
which would amount to the realisation of “strong” emergence among the levels.
However, we do not consider this situation to be the general one, and leave the
analysis of such specific cases for a future paper. See Mossio et al. (2013) for a
general philosophical discussion of emergence in relation to biological organisa-
tion. See also Longo et al. (2012b) for an analysis of a class of situations in which

description are considered. Accordingly, levels of description do
not play a specific role in the characterisation of constraints and
are therefore not included in the definition.

Because of their capacity to exert a causal influence on the
thermodynamic flow without being influenced by that flow,
constraints have, from a thermodynamic perspective, very special
features. A description of the causal role of constraints in terms of
thermodynamic exchanges may possibly be relevant to under-
standing the intermediate steps leading to the effect (such as the
sequence of alterations of an enzyme during catalysis), but would
be irrelevant to understanding the overall effect, which does not
involve a flow between the constraint (or more precisely, its
relevant aspects as mentioned in the definition) and the con-
strained process or reaction.

Before moving on, let us first discuss two significant theoretical
and epistemological issues, both related to the characterisation of
the causal role of constraints.

The first one concerns the fact that, following our definition, a
constraint alters the behaviour of a process although, strictly
speaking, it does not lead in many cases to new possible beha-
viours for the constrained process.”” More technically, when the
set of possibilities are determined by conserved quantities, the
latter cannot be altered by fluxes coming from constraints, which
are themselves, by definition, conserved through (i.e. are sym-
metric with regard to) the process. For instance, a constraint does
not play a role in the balance equation of a given chemical
reaction, an equation which is based on the conservation of matter
(i.e. the conservation of the quantity of every type of atom and
electron). That chemical reaction would therefore be possible in
principle, but so slow (or, from a molecular viewpoint, so unlikely)
that it would require centuries to take place, and would be
quantitatively irrelevant. The causal role of constraints (here, like
enzymes) is to accelerate the reaction enough to actually achieve
the result at a shorter (and biologically relevant) time scale.

By claiming that, in many cases, constraints do not generate
new possibilities for the constrained processes, the remark above
explicitly suggests that constraints are mostly limiting, insofar as
they canalise (condition I) the constrained processes toward a
specific outcome from among a set of already possible ones. At
first glance, this characterisation seems to diverge from related
analyses of the role of constraints in explaining biological organi-
sation. In particular, as Juarrero (1999) has pointed out, the
constraints at work in biological systems are generative, in the
sense that they enable behaviours and outcomes that would
otherwise be impossible. Is there a theoretical disagreement here?
We believe that the distinction between limiting and generative
constraints corresponds to a difference in the time scale at which
their causal effects are described. We maintain that the con-
strained dynamics or outcomes could in most biological cases
occur in an unconstrained way at the relevant (very long, or
infinite) time scale; yet, at biological (shorter) time scales,

(footnote continued)
systems cannot be analysed at a single level, because of mathematical singularities
and because the relevant symmetry lies between different levels of descriptions.
7 Note that the distinction between “possible” and “impossible” situations
may sometimes be fuzzy insofar as different theoretical frameworks can be used to
account for the same phenomena (as long as they lead to trajectories that are
quantitatively similar). Typically, situations that are impossible in one framework
might become possible in another, in which case these discrepancies have very
small probabilities, to the extent that they have no experimental or practical
relevance (which enables the two viewpoints to be compatible). For example, from
the viewpoint of statistical mechanics the space of macroscopic possibilities may be
huge, even though some (most) of them have negligible probabilities, while the
thermodynamic viewpoint is mostly deterministic and therefore has a reduced
macroscopic space of possibilities. Technically, in statistical mechanics a huge set of
macroscopic configurations are possible, but the probabilities of most of them
are tiny.
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constraints are indeed required in order to actually achieve these
specific dynamics and outcomes because they contribute to
producing otherwise improbable (or virtually impossible) effects.
In particular, each constitutive constraint within a biological
organism enables the maintenance of other constraints as well
as, because of closure, the whole system. As a result, although
constraints are mostly limiting at longer time scales, they can be
pertinently conceived as generative at shorter time scales: in this
sense, this characterisation is perfectly consistent with our account
that claims that biological organisation could not exist without the
causal action of constraints.

The second issue is related to our understanding of the causal
role of constraints stemming from the conjunction of conditions I
and II. Condition II stipulates that, at z, the relevant aspects Ca_,p
of the constraint are conserved during the constrained process. As
discussed above, a flow from the constraint to the process would
deplete a state function of the constraint (with respect to the
constrained process), which is forbidden by definition. In short,
there is no flow of matter'® or (free) energy (or any conserved
quantity) between C,_,g and A— B. Yet, according to condition I, at
7 constraints play a causal role in the process. How is such a role to
be conceived in this framework? How can constraints be con-
served and yet at the same time play a causal role? In our view,
constraints do not produce their effects by transmitting energy
and/or matter to the process, but rather by canalising and harnes-
sing a thermodynamic flow, without being subject to that flow.
Accordingly, the vasculature channels the blood flow, and the
enzyme provides an easier energy path for a reaction.

Even in those cases in which functional constraints, prima facie,
appear (see footnote 18 above) to transmit energy, we hold that
they do in fact channel an energy transfer while being conserved.
Consider the example of the heart which, according to the usual
description, “pumps the blood”: is this a case of a macroscopic
constraint which contravenes our definition because it transmits
kinetic energy to the blood? In our view, such a conclusion stems
from an incorrect description of the constraints involved. To see
why, let us decompose the situation in which “the heart gives
kinetic energy to the blood”. Under the initial conditions, blood is
located at some point in the body and energy is stored, in a
chemical form, in the cardiomyocytes. After pumping (our target
process), blood circulation is accelerated and the cardiomyocytes
have produced chemical waste. This rough decomposition shows
that “the heart”, understood as a region of space inside the
organism, in fact includes entities (both the blood's hydrodynamic
state and the cardiomyocytes) which, in our framework, should be
considered processes. What then are the relevant constraints? In
this situation, the constraints are the elements of the complex
multiscale structure of the heart that channel the transfer of the
cardiomyocytes' chemical energy to the blood's kinetic energy.
These elements include (among others) the relevant components
of the cardiac cells (mitochondria, sarcomeres, myofibrils), which
transform chemical energy into mechanical forces, the geometric
architecture of the heart and its electric conduction structure that
macroscopically shapes these forces both spatially and temporally.
All these entities remain approximately (see footnote 9 above)
conserved after a heart beat, while constraining the release of
chemical energy. In short, we could refer to it as the “architecture”
of the heart at this time scale, and claim that such an architecture

18 In order to fit this definition, it is not enough that a flow be compensated by
another process. However, there may be a temporary change of the constraint if the
corresponding (algebraic) quantity is given back to the constraint before the end of
the process. For example, consider arp. Atp is not a constraint for a reaction that uses
its energy (it is consumed): however, it is a constraint for the transformation and
transport of the energy of glycolysis (or another reaction) to a target reaction, since
this process leaves atp invariant.

constrains the transformation of the chemical energy (A) of
cardiomyocytes into the kinetic energy of the blood (B).

The central outcome of the theoretical distinction between
constraints and processes is a distinction between two regimes of
causation. For a given effect of a process or reaction, one can
theoretically distinguish, at the relevant time scale, between two
causes: the inputs or reactants (in Rosen's terms, the “material”
causes) that are altered and consumed through the process, and
the constraints (the “efficient” causes, at 7), which are conserved
through that very process. Insofar as they are irreducible to the
thermodynamic flow, and then to the material inputs or reactants,
constraints constitute a distinct regime of causation.

4. Dependence

Organisational closure occurs in the specific case of mutual
dependence between (at least some of) the constraints acting on a
biological system. Before discussing closure as such, let us first
focus on the relationship of dependence between constraints.

In the previous section, constraints are defined as entities
which, at specific time scales, are conserved (symmetric) with
respect to the process, and are therefore not the locus of a transfer.
However, constraints are typically subject to degradation at longer
time scales, and must be replaced or repaired. When the replace-
ment or repair of a constraint depends (also) on the action of
another constraint, a relationship of dependence is established
between the two.

Let us consider a constrained process A; 381 (t1). Because of
condition II, there is a time symmetry at scale 7, associated with
Cy, which concerns those aspects which are relevant for the
process that is constrained. At the same time, C; is the product
of another constrained process A29>C1 (1), at a different time
scale. At scale 75, C, plays the role of constraint, whereas C; does
not, since it is the product of the process A; %Cl

scale : Cs
T2 : AQ —i—> 01
T1 i A1 —— Bl

This situation establishes a dependence between constraints in
which constraint C; depends on constraint C,.

Definition 2 (Dependence between constraints). Following the
above line of reasoning, we define a relationship of dependence
between constraints as a situation in which, given two time scales
71 and 7, considered jointly, we have

1. C; is a constraint at scale 7.

2. There is an object C, which at scale 7, is a constraint on a
process producing aspects of C; which are relevant for its role
as a constraint at scale 7, (i.e. they would not appear without
this process).

In this situation, we say that C; is dependent on C,, and that C, is
generative for C;.

By way of example, let us consider the production of an
enzyme. As discussed above, an enzyme acts as a constraint on
the reaction it catalyses. In turn, enzymes are themselves pro-
duced by and within the cell, through the translation process:
ribosomes build the primary sequence of the future protein on the
basis of the messenger rna (MRNA) sequence, without consuming it.
Since the ribosomes and the mrna play a causal role while being
conserved during this process, they both act as constraints (at a
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specific time scale) on the production of the enzyme. Conse-
quently, the relationship between the enzyme, the ribosomes and
the mrna can be pertinently described as a dependence between
constraints (in which the enzyme depends on both ribosomes and
mRNA), insofar as all these entities satisfy the definition of con-
straint at specific time scales, which are considered jointly.

Let us examine some relevant implications of the above
definition.

Firstly, a dependence between constraints is conceptually
different from dependence between processes, which corresponds
to a situation in which a set of constraints act successively on a
chain of processes depending on each other.'” In the following
diagram, for instance

A2 A1 Bl

process A; — By depends on process A; —Aj. Yet, insofar as C; is not
the result of a process constrained by C,, there is no dependence
between the constraints involved.

Secondly, a relationship of dependence between constraints
does not involve a thermodynamic flow between the generative
and the dependent constraints. Indeed, because of condition I, the
conservation of C, at 7,, at which it plays its causal role implies
that no exchange occurs between the constraint and the con-
strained process A, —C; and, therefore, between C, and C;. In
contrast, at scales other than 7,, the relationship between con-
straints may involve thermodynamic exchanges which, neverthe-
less, would not interfere with the causal dependence described at
the relevant scale. At scales shorter than 7, and 74, for instance,
exchanges are possible but irrelevant, since these exchanges
would be further compensated at 7,, at which time scale the
generative constraint is conserved. This is typically what happens
in the case of enzymes, which bind and unbind to/from the
substrate. At scales longer than 7, and 74, on the other hand, the
interaction between the constraints and the processes usually
results in the degradation of the former; this degradation, how-
ever, would also be irrelevant to understanding the role of C; as a
generative constraint, which acts at 7,.2°

In a general sense, dependence between constraints can be
taken as the organisational principle underlying any “repair
mechanisms” at work in the organism which, in addition to the
wide-ranging literature on pna repair (Friedberg et al., 1995), also
include the repair of all kinds of parts of an organism (Wang et al.,
2009; Bergamini, 2006).?" Repair requires the existence of a part
(C1) which is conserved while the main process occurs (i.e. its
alteration is negligible at the relevant scale, 7,), even though it
may be altered in the long run (7). The maintenance of the
system's organisation, on the other hand, requires, at time scale 75,

9 When relevant, we can regroup the constraints acting on a chain of
processes into a single one (C;C;), especially when they act at the same time
scale. For example, various proteins help with protein folding, and they can be
grouped together as a unique (type of) constraint on protein formation. Such
regroupings may be particularly relevant in those cases in which the entire set of
proteins involved is not yet known.

20 Actually, the degradation of C, at long time scales may provide elements that
contribute to A;. For example, let us consider the situation in which one enzyme
depends on another enzyme. Here, the amino acids coming from the degradation of
either of them may provide material to the amino acid pool that, in turn, is used to
produce both.

21 Note that either reparation or replacement can be encountered. In the first
case, the entity is maintained while in the second it is destroyed and a similar one
is reconstructed. As a matter of fact, many situations can be interpreted as involving
both repair and replacement, depending on the scale considered and the precise
definition of the relevant objects: enzymes and cells are replaced, while popula-
tions of enzymes and tissues are repaired.

the existence of a second subsystem (C;) in charge of maintaining
C; through the adequate canalisation of a process A, 5 Cj.

Thirdly (and this is important for preventing possible miscon-
ceptions in the next section), dependence between constraints can
occur in two different ways, depending on the relations between
the time scales involved: slow dependence with 7, > 7; (below
left), or fast dependence with 7; > 7, (below right)

scale | Cs scale !
2 Ay—o— 0%1 G Ay —e—>§ B
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In the first case 7; > 74, the generative constraint C,, acts as a
constraint at a longer time scale than the dependent constraint,
which means that it is associated with a slower process.?” In the
second case, 71 > 7, the generative constraint, C,, is associated
with a faster process than the process constrained by C;. To be
compatible with the symmetry at scale 7; for C;, the process
constrained by C, has to constitute a statistical (or similar) time
symmetry at the longer scale 7,. Although it may seem more
unusual, fast dependence does occur in biological systems. For
instance, alcaline phosphatase is the result of the same process of
protein production described above; however, it constrains bone
mineralisation, which is a slower process than its own production.

Slow and fast dependence differ in an interesting way. When
the dependent constraint is faster, its stability is quite straightfor-
ward because something that changes very slowly seems to stand
still from the point of view of something faster. In the opposite
case, when the dependent constraint is slower (which is actually
the case for many chemicals involved in development), then a
sustained and stable activity of the faster process is required. As
we will suggest in the following section, organisational closure
necessarily requires the joint realisation of both kinds of
dependence.

The last step of this section introduces the notion of direct
dependence between constraints.

Definition 3 (Direct dependence between constraints). C; depends
directly on G if and only if

1. C; depends on C,.

2. There is at least one relevant aspect of C; that depends on G,
and which fulfils the following condition: none of the different
processes that occur at 75 and contribute to the maintenance of
this aspect follows the one constrained by C,, A, 3Ci, in
physical time.

As we will see in the following section, we argue that the
notion of direct dependence plays a fundamental role in organisa-
tional closure. Although we do not provide in this paper a
theoretical justification for this claim, the importance of direct
dependence is related to the degree of functional integration and
complexity realised by biological systems: the very existence of
the dynamic organisation requires that the maintenance of each
constraint subject to closure be under the direct, close control of

22 Note that if the dynamics of C; at scale 7, is smooth in the mathematical
sense, then there is a local time symmetry of C, at sufficiently short time scales.
This aspect, added to the status of C; as a constraint at 74, leads to a global (i.e. with
respect to all the processes considered here) time symmetry of C; at scale 7;
providing 7, is small enough.
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some other constraints subject to closure. An indirect, and there-
fore looser, dependence would presumably be incompatible with
the requirements for such a high degree of complexity and
coordination.

scale ! Cs Cs
T2 : A3 é A2 é Cl
T1 3 A1 —i—> B

In the above example, C; depends directly on C; but only
indirectly on Cs. Note that C; and C, are not necessarily constraints
at the same time scale.

Consider again the example of enzyme formation. The matura-
tion of the protein can be successively constrained by different
entities; the catalysis performed by the enzyme depends directly
only on the constraint exerted on the last process involved. The
relevant aspect impacted in this case is the conformation of the
protein or, more precisely, its ability to react to the relevant
chemicals, and the last process involved is the action of other
proteins on the endoplasmic reticulum, in eukaryotic cells. Accord-
ingly, the mrna population discussed above is only an indirect
generative constraint with respect to the conformation of the
protein produced; in turn, it directly contributes to determining
the number of proteins produced during the translation process
discussed above, which is a different aspect of the dependent
constraint.

5. Closure

Let us now turn to closure, which we interpret as a specific
property of a system with respect to dependence between
constraints.

Definition 4 (Closure). A set of constraints C realises overall
closure if, for each constraint C; belonging to C

1. C; depends directly on at least one other constraint belonging to
C (G; is dependent).

2. There is at least one other constraint C; belonging to C which
depends on C; (C; is generative).

A set C which realises overall closure also realises strict closure if it
meets the following additional condition:

3. C cannot be split into two closed sets.

Overall closure refers then to an organisation in which each
constraint is involved in at least two distinct dependence relation-
ships; in other words, each constraint plays the role of both
generative and dependent constraint. The condition added for
strict closure is aimed at ensuring that the definition applies only
to one system (rather than two independent systems). In what
follows we will use the generic term ‘closure’ to refer to strict
closure unless specified otherwise. The network of all those
constraints that meet the three requirements of closure is, we
hold, collectively able to self-determine through self-constraint.
Note also that the second condition does not require direct
dependence. The reason is that, while each constraint of C does
depend directly on another constraint included in the same set, it
might (and usually does) contribute to indirectly generating other
constraints, typically when several constraints act successively on
a chain of processes. For example, the shape of proteins depends

only indirectly on the mrna sequence since proteins mature in the
endoplasmic reticulum.

As an illustration of closure, consider the following network of
dependent constraints:

5| As
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In this diagram, C;, G, C3, C4 and Cs satisfy, ex hypothesi, the
definition of constraint at 7y, 7,, 73, 74 and 75 respectively.
Furthermore, C;, C;, C3 and C; play the role of dependent
constraints, while C,, C3, C4, and Cs are generative constraints.
The subset of constraints which are both generative and depen-
dent is then (Cy, C3, C4). The organisation constituted by C,, C3 and
C,4 realises closure.

It should be noted that two scales must be considered for every
constraint (C;) included in a closed system: one scale (z4(C;)) at
which G is associated with a time symmetry (z5(C3)=173), and
another (74(C;)) at which it is produced and/or maintained
(74(C3) =174). As shown in the diagram, one general property of
closure is that it must include at least one constraint for which
75(C;)—74(C;)) >0 and another for which z4(C;)—74(C;)<O0: the
resulting organisation, therefore, is not only multiscale but also
requires the realisation of both slow and fast dependence between
constraints.??

As mentioned in the Introduction, this characterisation of
closure is, of course, very general and schematic, and unable to
capture the complexity of its actual realisations by biological
systems. Yet at the same time it is precise enough to derive several
implications.

Firstly, as argued recently (Mossio et al., 2009; Saborido et al.,
2011) and mentioned briefly in Section 3 above, we claim that
constraints subject to closure constitute biological functions.
Within this framework, performing a function is equivalent to
exerting a constraining action on an underlying process or reac-
tion. All kinds of biological structures and traits to which functions
can be ascribed satisfy the definition of constraint given above,
albeit at various different temporal and spatial scales. In addition
to the vascular system and enzymes mentioned above, some
intuitive examples include, at different scales, membrane pumps
and channels (which constrain both the inward and outward flow
of materials through the membrane) and organs (such as the heart
which constrains the transformation of chemical energy into blood
movement). Closure is then what grounds functionality within
biological systems: constraints do not exert functions when taken
in isolation, but only insofar as they are subject to a closed
organisation.

23 Note also that if, as in the diagram above, each constraint depends on only
one other constraint, then the organisation has very specific properties: namely the
system forms a single closed chain of dependent constraints (a closed subset would
break the chain). On the contrary, there can be multiple closed subsystems when
constraints generate and/or depend on multiple constraints. Biological cases
correspond to the second situation: for instance, many constraints depend on the
cellular membrane, on ribosomes or on the vascular system.
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Secondly, closure should be clearly distinguished from inde-
pendence, insofar as a system which realises closure is a physically
open system, inherently coupled to the environment with which it
exchanges energy and matter (Nicolis and Prigogine, 1977). This
implies in particular that closure is a context-dependent determina-
tion, to the extent that it is always realised with respect to a set of
specific boundary conditions, which includes several external (and
independent) constraints acting on the system (such as, for
instance, constraint Cs in the diagram above). Consequently,
closure does not and should not include all the constraints with
which the system may have a causal interaction, but rather only
the subset of those which fulfils the requirements stated above.?*

Thirdly, closure of constraints is different from the underlying
open regime of thermodynamic processes since, as discussed in
Section 3, constraints are conserved through the thermodynamic
flow at the relevant time scales. Hence, a description of closure in
terms of the causal regime of thermodynamic changes would be
inadequate, since it would be unable to include constraints as such
and their contribution as causal factors. In particular, a description
of biological organisation which does not use the causal power of
constraints and their closure would amount to a system consti-
tuted by a cluster of unconnected processes and reactions, whose
coordinated occurrence would be theoretically possible at very
long time scales (see the discussion in Section 3), but extremely
unlikely (virtually impossible) at biologically relevant time
scales.?®

To conclude this section, let us discuss in a very preliminary
way how closure can be described in practice. As a matter of fact,
although closure is different from the thermodynamic flow, it does
unfold over time, mainly because the various functional con-
straints do not usually operate simultaneously. Moreover, as
mentioned, constraints are such at different time scales, which
means that closure is a multiscale causal regime. Jointly consid-
ered, these features raise the question of how a description of the
closed network of dependencies can be obtained. At least two
aspects should be mentioned here.

Firstly, a sufficiently long duration has to be considered, in
order to include all the relevant time scales (from shorter to
longer) at which each constitutive constraint can be described,
providing the dynamics of the biological system continue to take
place. Usually, for example, the description of an adult mammal
organism requires the consideration of those constraints exerted
on relevant processes with the time scales ranging between a
fraction of a second (for fast neural or mechanical phenomena)
and a substantial fraction of the organism's lifespan (for slow
phenomena which are nevertheless fast enough to be sustained by
and within the organisation, such as the maintenance of bone
structure).”®

24 The distinction between constitutive and non-constitutive constraints relies
mainly on the definition of dependence established in the previous section. In fact,
most external constraints do have causal interactions with the system and,
consequently, either affect it or are affected by it. Yet, even when it can be shown
that a non-constitutive constraint interacts with the closed system (in which case
one may wonder whether or not it is subject to its closure), it should be also shown
that, in accordance with the definition, the relationship of dependence is direct
and, moreover, concerns the relevant aspects thanks to which the entity satisfies the
definition of constraint, at the relevant scale.

25 This implication makes it possible to distinguish between a closure of
constraints and a cycle of processes or reactions such as, for instance, the
hydrologic cycle. In the case of cycles, the entities involved (e.g. clouds, rain,
springs, rivers, seas, clouds, etc.) are connected to each other in such a way as to
generate a cycle of transformations and changes. In turn, these entities do not act as
constraints on each other, and the system can be adequately described by appealing
to a set of external boundary conditions (ground, sun, etc.) which act on a single
causal regime of thermodynamic changes (see also Mossio et al., 2013).

26 Closure depends on the processes that are considered and their correspond-
ing time scale. For example, the transport of blood in a blood vessel can be

Secondly, once the constraints have been included, the organi-
sation of dependencies between them must be described. This can
only be done by abstracting them from the physical time in which
they occur, since closure cannot be described at a given point in
time, but rather requires us to consider a set of processes taking
place at different time scales (some processes may not be
permanent, but rather may occur cyclically as is the case with
heartbeats, for example). Thus, the whole network of dependen-
cies should be considered as one “block” extended over multiple
time scales. Accordingly, closure consists of an interdependent
relational network of dependencies, extracted from the dynamics
of the system in physical time.

With this general characterisation in mind, we deal in the next
section with the application of closure as a theoretical criterion for
drawing boundaries between systems in the biological domain.

6. Closure and boundaries

In principle, closure constitutes a clear-cut criterion for drawing
the boundary between a biological entity and its environment. In
organisational terms, in fact, the set of constraints subject to
closure define the system, whereas all other constraints (and
specifically those which have causal interactions with the system),
belong to the environment. Accordingly, the ascription of closure
to a system calls for a “yes or no” answer, usually based on a
topological (circular) property of the network of interactions
(whatever the underlying mathematical framework). At first
glance, this holds true for our characterisation: in our abstract
example above, constraints C,, C3 and C4 constitute the system,
whereas constraints C; and Cs do not. Furthermore, as a distinctive
and fundamental biological feature, closure is first and foremost
supposed to apply?’ to biological organisms (both unicellular and
multicellular cases), the prototypical example of organised
systems.

Nevertheless, one may wonder whether (and indeed how),
without further specifications, closure can be ascribed to parts of
organisms on the one hand, and to systems whose constituents are
themselves organisms on the other hand. In other words, the
question of the “lower and upper” boundaries of closure calls for a
conceptual and formal treatment; in this section, we take some
preliminary steps in this direction.

Let us consider first the lower boundaries of closure ascription.
The crucial remark is that, in practice, any actual description of
closure in biological systems is a partial one, as a complete
characterisation of the whole set of mutually dependent con-
straints is usually not available, and constitutes a sort of “theore-
tical horizon” of biological explanation.

Consequently, the incompleteness of current descriptions may
generate a dilemma: either closure is to be ascribed to whatever
system fit these incomplete descriptions, in which case some parts
of biological systems may possibly be taken as closed; or closure is
to be ascribed only to those systems for which complete

(footnote continued)

considered globally (for example average time to travel from the heart to the
organs and back again to the heart), or more locally (time spent inside a capillary).
Processes may also be described in more or less detail. Typically, different processes
may be grouped together, and some aspects of the systems can be ignored. This is
particularly the case when, in the context of closure, one is studying a specific part
of an organism that is not (much) dynamically impacted by some other aspects of
the closed system.

27 It is worth recalling that from our perspective, although an organism
necessarily realises closure, a system realising closure is not necessarily an
organism. In other words, closure does not define the notion of organism: see
Moreno and Mossio (2015) for an analysis of this issue.



188 M. Montévil, M. Mossio / Journal of Theoretical Biology 372 (2015) 179-191

descriptions are currently available, in which case virtually no
system would meet the requirements.

In order to overcome this difficulty, we suggest the following
strategy. In the absence of complete descriptions, closure should
only be ascribed to maximally closed systems, i.e. those systems
which include all mutually dependent constraints, in the available
description. Maximally closed systems therefore constitute the
lowest boundary of closure ascription: in principle, no subsystem
of collectively dependent constraints that can be shown to belong
to an encompassing closed system can be said to realise closure.”®

Let us now turn to all those cases in which two or more biological
organisms establish a form of mutual dependence due to stable
interactions between them, such that each of them can be said to
rely on the other(s) for its own maintenance. In these situations, in
which a fundamental organisational continuity exists between the
interacting organisms, the upper boundaries of closure ascription
seem to extend beyond each organism, insofar as the notion of
maximally closed system applies only to the encompassing system
which contains all (known) constraints subject to closure. If we were
to limit ourselves to this analysis, it would be impossible to describe
systems including different nested levels of organisational closure and
systems belonging to closed systems (and specifically mutually
dependent organisms) would not themselves realise closure as
discussed above. Moreover, since biological organisms are system-
atically involved in such interactions it would follow that most of the
time individual organisms cannot be said to realise closure. The main
theoretical upshot would be a serious weakness for any account based
on closure, which could not be considered a distinctive property of
organisms in many biologically relevant cases. In the remainder of this
section, we will address this challenge in a (preliminary) conceptual
and formal way. We distinguish three different situations in which
two or more closed systems realise mutual dependence.

The first situation is that in which the disjunction between the
interacting closed systems is straightforward. In this case, either
there is no mutual dependence between the two closed systems
or, if there is a mutual dependence, then the relationship between
the systems is, at least in one direction, one of indirect depen-
dence. To use the technical terms introduced in Section 5 above,
the encompassing system which includes the interacting systems
realises overall closure, but not strict closure. For instance, con-
sider the case of a group of humans in which there is a division of
labour, with some members being in charge of hunting, and others
in charge of cooking. Let us suppose that both hunting and cooking
could be pertinently characterised as macroscopic constraints
exerted on the flow of energy and matter. Collectively, there is
some mutual dependence between the members of the group,
although the dependence on hunting would presumably be
indirect, in the precise sense that the processes constrained by
hunting are followed by other processes that contribute to the
maintenance of the organisation of the members of the group. Of
course, a finer-grained description of this kind of dependence
would be needed, but we will leave that for a future paper. For the
purposes of this paper, we simply suppose that many cases of
biological interactions could be pertinently described in terms of
indirect mutual dependence; thus, the characterisation of closure
we provided, which explicitly requires direct dependence (so as to
capture a distinctive feature of biological integration), makes it
possible to exclude these kinds of looser, although mutually
beneficial, interactions.

28 Accordingly, a conceptual distinction can be made between “mutual depen-
dence” and “closure”: while the former is realised by any (sub)set of entities which
depend directly on each other, the latter is realised by the set of all entities which
are mutually dependent within a system. So for instance, although the heart and
lungs are mutually dependent, only the whole set of organs forming the organism
realises (ex hypothesi) closure.

The two other situations that we discuss in the following sub-
sections both involve, ex hypothesi, direct mutual dependence
between organisms. Firstly, there are cases in which a limited
number of individual organisms realise mutual dependence, a
situation which results in the establishment of an encompassing
closed system (such as for instance in the classical example of
mutualistic symbiosis). As we will suggest, organisational bound-
aries can be drawn in this case between the interacting organisms,
although they do not correspond to strict discontinuities but
rather to a quantitative evaluation of the tendency to closure
(Section 6.1). Secondly, we will examine those cases of populations
or groups of organisms which collectively contribute to the
emergence of an encompassing closure; cells in multicellular
organisms are a paradigmatic example. In this kind of situation,
we argue (in Section 6.2) that the closure of the collective system
may, in some conditions, be separated from that realised by the
constitutive organisms. Such separation provides the grounds for
characterising different levels of closure.

6.1. Tendency to closure

Let us consider two or more biological organisms (two abstract
cells), each of which could be said to realise closure when taken in
isolation. Moreover, let us assume that the cells establish strong
interactions resulting in direct mutual dependence. As a result, the
encompassing system is the maximally closed system which
realises closure. In this situation, is there a legitimate way to
argue that the individual interacting cells also realise closure? As
mentioned above, closure is usually considered a Boolean prop-
erty. Here, we propose to apply our characterisation in a different
way, and to describe a procedure which enables closed systems to
be delimited through the drawing of their spatial boundaries. The
general idea is to use a quantitative assessment of the tendency of
constraints to be “packed together” in space.

Let us choose an arbitrary volume of space V (included inside one
of the cells, for example) and consider the processes and constraints
taking place inside this volume. We use K(V) to refer to the number
of dependencies between constraints subject to closure in the
encompassing system which take place in V. Intuitively, K(V)
represents a quantitative assessment of the organised complexity
contained in V.?° If we now continuously increase the volume V),
K(V) will also increase (it cannot decrease because it includes an ever
larger number of constraints). We hypothesise that, when appro-
priately chosen, V' can initially include only part of a cell, and then
grow so as to include the entire cell: in this case, K(V) will rapidly
increase and then remain steady. Accordingly, its derivative®® will be
positive within the cell, reach a peak at the boundary and then
collapse (to zero, in the limiting case). The assessment of organised
complexity is completed by considering K(V,[), which is defined as
above, except that we select the dependencies occurring on a given
spatial expanse [ (a spatial scale). Note that the sum of K(V, ) over all
[ equals K(V).

A procedure to represent the boundaries between the interact-
ing cells can be implemented by relying on this measure of
complexity. Let us presuppose some a priori knowledge of the
localisation of the considered cells in space, which guides the
choice of the initial volume.?" Any increase of V will lead to an

29 This definition is adopted for the specific purposes of this discussion. For
general purposes, a more refined definition of organised complexity should be
formulated.

30 Note that this count is a discrete quantity that we discuss in continuous
terms. The reason for this is that we are especially interested in situations where
there are many constraints, which enable continuous approximations.

31 Such knowledge may take the form of a biological hypothesis that the
procedure will enable to test.
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exploration of the spatial domain of the system. Given that this
exploration may take different forms, we can specify it so as to
include the cells sequentially, one by one (see one of the examples
below). The quantity that we propose to represent with this
procedure is 6K(V, 1), i.e. the increase in the number of dependen-
cies which corresponds to the increase in volume 6V. 6K(V,I)
will be represented as a function of both | and the volume V
already explored. The spatial scale enables one to associate a
process that is included in our representation with an extended
region of space.

We submit that the 6K(V,l) is a measure of the tendency to
closure of the organisms involved. As shown in Fig. 1, measuring
OK(V,l) generates a pattern which has higher values when it
corresponds to the volume of an organism, collapses thereafter,
and increases again when it corresponds to a new organism. Such
a pattern also provides a quantitative measure of closure for each
organism and, through the discontinuities (points of collapse), a
representation of the boundaries between the interacting organ-
isms. It should be noted that since 6K(V,l) is a quantitative
measure of the dependencies subject to closure (and not just
individual constraints), its value will be highly dependent on those
constraints which are involved in many dependencies. A good
example are membranes, which are involved in so many depen-
dencies that their inclusion in the graph would dramatically
enhance the tendency to closure of the considered volume.

The tendency to closure is a measure of the degree of
organisational integration of organisms and, as well as, an opera-
tional tool for drawing the boundaries between them, even when
they establish functional dependence. It is worth emphasising, in
this respect, that such a measure comes in degrees. For example,
one can conjecture that the tendency to closure is higher for a
unicellular eukaryote than for a cell in a metazoan. Similarly, the
tendency to closure of a biofilm is arguably weaker than that of an
individual bacterium, or a metazoan. The same differences might
also emerge when comparing closed systems located at various
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nested levels of organisation (see the following subsection), such
as, for instance, in the case of the ant and its colony.

Although the above treatment is still preliminary, the formal
expression of the tendency to closure (as a quantitative assess-
ment of organised complexity) will hopefully pave the way to
future scientific exploration.

6.2. Hierarchical boundaries of closure

The tendency to closure makes it possible to identify relevant
biological interacting entities in those (widespread) cases in which
there is some degree of functional overlap between them. In this
sub-section, we discuss a different kind of situation, in which a
closed organisation is composed of constituents which themselves
realise closure: the paradigmatic example is a multicellular organ-
ism made up of its cellular constituents.

One possible view on this situation is that the cells contribute
to the realisation of the multicellular organism and are, therefore,
also subject to the encompassing closure. Consequently, the
boundaries of each individual cell can only be drawn by measuring
their tendency to closure, as discussed in the previous section.

However, we submit that this situation has specific properties.
Indeed, individual cells usually do not technically exert a constraint
which contributes to the maintenance of the multicellular system.
Rather, functions subject to multicellular closure are exerted by
populations or groups of cells that form tissues and organs. In the
formal framework proposed in the previous section, this situation
can be described by emphasising two aspects, both related to the
very definition of constraint. Firstly, the contribution of an indivi-
dual cell does not meet condition I of the definition of constraint,
for the specific reason that its effects on the process are negligible.
For example, the contribution of an individual epithelial cell to the
regulation of insulin levels is negligible. Secondly, individual cells
also fail to meet condition II, insofar as the relevant symmetries
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Fig. 1. This figure is a toy example of the procedure described in the text. Left: two highly simplified cells that share two functions c,’; and C9 taking place in this case at an
higher spatial scale. This situation can be interpreted as a schematic representation of mutualistic symbiosis, in which each symbiont exerts some macroscopic function (used
by the other, and vice versa) that can be distinguished from its own internal constitutive functions. The two cells are mutually dependent, and the encompassing system
realises (maximal) closure. The diagram represents a simplified graph of constraint dependences (processes are not included). Each dependence (wavy arrows) is described
as a function of its spatial scale I and its localisation in the volume V. Right: the volume V starts growing from the left and encounters a first entity, composed of several
constraints at similar spatial scales. While exploring the first cell, 5K(),]) increases, reaches a peak when it includes the whole cell, and then collapses when it goes beyond
the cell. The increasing volume then encounters the second cell and generates a similar representation, shifted in space. At some point, the shared functions Cg and Cg (which
in this situation are described at a larger spatial scale) are also included when V reaches the relevant size. As a result, in spite of the fact that the interacting cells belong to an
encompassing system realising closure, the procedure enables them to be represented as two discriminable systems. At the same time, the procedure also captures the fact
that the two cells are symbiotic by representing their mutual dependence (here, at a different spatial scale). Note that, in this example, the degree of organised complexity of

the interacting cells is higher than that of the encompassing closed system.
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which characterise the constraint are respected at higher scales
(both spatial and/or temporal) than those at which the individual
cells are described. For example, in relation to the constraint
exerted on the blood flow by blood vessels, it is fairly apparent
that many cells are required to obtain the geometrical and
topological properties on the basis of which the relevant con-
straint becomes operational.

Thus, overall, it seems that cells do not usually act as con-
straints individually, but only collectively, when they are
assembled in tissues and organs. Consequently, it follows that in
most cases there is no mutual dependence between each cell and
the encompassing system, enabling their respective closures to be
separated, even though they realise a nested hierarchy (the closure
of the cells is nested within the closure of the encompassing
system). In a sense, this implies that the internal functional aspects
of the cells can be separated from those aspects that matter for the
organism's organisation. The separation between nested closures
provides a straightforward basis for drawing the boundaries
between organisms.>?

We conjecture that a relationship between two closures of
constraints which involves both separation and a nested hierarchy
provides the theoretical basis for characterising, in our framework,
a distinction between levels of organisation. Two closed regimes
constitute two different levels of organisation if they are both
separated and hierarchically nested; accordingly, cells and multi-
cellular organisms constitute two different levels of organisation.

We leave a full-fledged analysis of this issue for future work. Let
us simply mention that other levels of organisation could pre-
sumably be identified beyond the unicellular and multicellular
ones: an example could be ecosystems (Nunes-Neto et al., 2014).
At the same time, not just any level of description would qualify as
a level of organisation in this technical sense: arguably, a relatively
small number of levels could be identified in the biological realm.

7. Conclusion: invariance and variation

In this paper, we have argued that the specificity of biological
systems lies in their capacity for self-determination as self-
constraint. As discussed above, the central idea is that self-
constraint occurs in biological systems in the form of closure, i.e.
a causal regime in which a set of mutually dependent constraints
act on the flows of energy and matter so as to collectively maintain
themselves, and their organisation, over time. In turn, the funda-
mental formal distinction between the two regimes of causation at
work (constraints and processes) relies on the identification of
symmetries, and local conservations, at the relevant (temporal)
scales.

As a conclusion, we would like to examine an underlying
theoretical implication of this framework, already evoked in
Section 2, i.e. the fact that closure constitutes a principle of
stabilisation of biological organisation and, therefore, a funda-
mental biological invariant. At the same time, the invariance of
closure by no means signifies that biological systems are not
subject to variability. Let us develop this idea.

As argued above, closure takes place in a temporal interval, and
can be described by abstracting the network of closed dependen-
cies from the time flow. In this formal framework, the claim
according to which closure constitutes an “invariant” of biological
organisation technically means that a description of closure is
possible for any interval long enough to describe a sufficient set of

32 It should be emphasised that such a separation, of course, does not imply
that there would be no interactions between the cells and the multicellular
organism. For instance, cells are continuously under the control exerted by
multicellular functions.

constraints and their mutual dependencies. In other words, given a
minimum duration, closure is realised for any interval of equiva-
lent duration chosen in the system's lifetime. The stabilisation of
biological phenomena results specifically from the continuous
control exerted over processes and reactions by functional con-
straints, whose maintenance in the long run depends in turn on
their mutual dependence through closure. The invariance of
closure grounds the stabilisation of the functional organisation.

Stabilisation, however, does not prevent variation, which may
refer to two different kinds of changes. On the one hand, organised
constraints can exhibit negligible variations, i.e. variations which
do not affect their functional role and do not, therefore, alter the
overall organisation. This may be the case when the variation
occurs only at short time scales (and is then compensated for), or
when then variation is irrelevant with regard to the effects of the
constraint on the process. On the other hand, biological systems
may (and do) undergo functional changes both throughout their
lifespan and over the generations. These changes affect the
structure and the function of one or more constraints, which in
turn result in a modification of the organisation. Functional
variations are related to many factors, including the life cycle
and the interactions with the environment, as well as random
changes. In some cases, functional variation threatens the viability
of the whole system, and may possibly lead to its break-up.>® The
crucial thing to bear in mind in this respect, however, is that
functional variation is not merely an obstacle for the maintenance
of the biological organisation; rather, it is also a crucial require-
ment for the adaptivity, increase in complexity and ultimately the
long-term sustainability of life (Ruiz-Mirazo et al., 2004). Indeed,
in addition to their functional role within a specific organised
system, constraints also play a role in enabling the emergence of
new constraints, new organisations and new behaviours, typically
at the evolutionary and populational scales (Longo et al., 2012a;
Longo and Montévil, 2013). Reciprocally, functional variation alters
the organisation and yet must be subject to closure in order to be
sustained over time. The contingency of biological systems, and
their capacity to undergo changes for both intrinsic and extrinsic
reasons, justifies the need for the collective maintenance of the
constraints.

As biological systems undergo functional variations, their
organisation maintains closure, albeit realised in different variants,
because of the continuous acquisition of some functions, and the
loss of others. In this sense, the invariance of closure takes place at
a level of description which is higher than that at which each
specific organisation (instantiated by an individual system) occurs.
Understood in this way, the invariance of closure may be said to be
complementary to its functional variation, with both being con-
stitutive principles for biology. In a word, the role of closure as a
principle of stabilisation becomes all the more important when
the contingency of biological systems is placed at the heart of their
understanding.
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